Professor Tudorel ANDREI, PhD (Corresponding author)

E-mail: andrei.tudorel@csie.ase.ro

The Bucharest University of Economic Studies

Professor Régis BOURBONNAIS, PhD E-mail: regis.bourbonnais@dauphine.psl.eu

Laboratoire Economie Dauphine

Université Paris-Dauphine, Paris, France

Professor Bogdan OANCEA, PhD

University of Bucharest

E-mail: bogdan.oancea@faa.unibuc.ro

Andreea MIRICA, PhD

The Bucharest University of Economic Studies

E-mail: andreea.mirica@csie.ase.ro

MIXED MARRIAGES IN ROMANIA – THE CASE OF THE HUNGARIAN MINORITY

Abstract. Ethnically mixed marriages represent a crucial element for ensuring cohesion within communities characterised by a high diversity. This paper aims to point out the main factors that influence the likelihood of mixed marriages in areas from Romania where Romanians and Hungarians cohabitate. In this respect, anonymised census microdata are used. The study reveals that educational attainment, age difference between spouses and the number of Hungarians within the locality/village or municipality might have a significant effect on the likelihood of a person to engage in an ethnically mixed marriage. The effects are slightly different for men and women.

Keywords: logit model, ethnically mixed marriages, Hungarians, diversity, marriage.

JEL Classification: J12, J11

A. Introduction

Marriage, especially ethnically mixed marriage, is one of the most intensively researched fields in the social sciences (Dumănescu et al, 2014, Maarten van Ham and Tammaru, 2011). Moreover, the share of these marriages in the total number of marriages represents a cohesion indicator in a society (Monden and Smits, 2005). This subject is extremely important as information on mixed marriages can be included "into models of ethnological monitoring and early

warning systems for ethnic conflicts (Smits, 2010, p.417), a necessity in a world where people of different race, religion and ethnicity coexist in a small areas (Blau and Schwartz, 1984).

The logit model is used in various studies, in economics, social, medicine etc., to identify the influence of some factors in modifying a variable. Next, we present some examples: the logit model is used to evaluate characteristics of the labour market [Andrei and Bourbonnais, 2017]; applying logit in health domain [Jones, 2007], education [Bailey, 2017], agriculture research [Adeogun, 2008] etc.

The probability for Hungarians, separate for male and female, to have a marriage with a partner who has other nationality is estimated using characteristics of person and their area of residence within the framework of a logit model:

$$p_i = \frac{\exp(a_0 + \sum_{j=1}^{12} a_j x_j)}{1 + \exp(a_0 + \sum_{j=1}^{12} a_j x_j)}$$
[1]

where x_j , j = 1, ..., 12 are the variables which assume that have an effect on mixed marriages.

The relation [1] can be written:

$$ln\frac{p_i}{1-p_i} = a_0 + \sum_{j=1}^{12} a_j x_j$$
 [2]

Hungarians represent 6.5% of the permanent resident population registered at the 2011 Population and Housing Census in Romania, concentrated mostly in Transylvania, making studies with regard to mixed marriage, crucial. Such studies have focused on the historical perspective (for example, Horvath, 2014). The present study contributes to the literature because it uses an econometric approach using microdata from the Population and Housing Census, permitting and analysis by various variables on this phenomenon: sex, educational level of spouses and type of locality/village or municipality with regard to the number of Hungarians and age difference of the spouses. Sex was considered a relevant variable because literature showed that when forming a mixed marriage, men and women often have different behaviour within the partnership like for example, men being more likely to adopt the nationality of their spouse (Neyrand and M'Sili, 1998). Age difference between spouses was incorporated into the analysis because it may represent a crucial factor for the success of a mixed marriage (Schmitt, 1969). With regard to educational attainment, scientific literature pointed out that it may explain the willingness of both men and women to engage in a mixed marriage (Okun, 2004). Difference in educational level between partners within a marriage may be an indicator or whether the society is traditional or egalitarian, more specifically, if the woman has the highest educational attainment, the more likely the society may be egalitarian (Kalmijn, 2013). Locality/villages and municipalities were grouped

according to the number of permanent resident Hungarians and included within the analysis because one of the main factors affecting the decision to marry is residential proximity of possible mates (Kulu and Hannemann, 2019).

B. Data and methodology

In order to perform the study, anonymised microdata for individuals and aggregated data at component localities and villages and municipalities level from the 2011 Population and Housing Census in Romania were used. Individual data include age, educational level and area of residency (urban or rural). Data at component localities and villages and municipalities level were computed based on individual data on usual residency and ethnicity, resulting in three indicators the share of Romanians, Hungarians and other ethnic groups, respectively. Moreover, three types of villages (with less than 50 Hungarians, between 50 and 100 and between 100 and 500) and three types of municipalities (with less than 1000 Hungarians, between 1000 and 5000 and over 5000) were defined based of the same data. The thresholds for this grouping were determined by analysing the distribution of the cities, villages and municipalities by size and choosing the corresponding quantiles.

In order to reveal as many aspects of mixed marriages as these microdata permit, logit models for men and women, respectively were used. Table 1 presents the variables used in these models.

Table 1. Variable used in the logit models for men and women

Symbol	Name	Description
x_1	The share of Romanians within	The number of Romanians divided
	the village	by the total number of permanent
		residents within the village
x_2	The share of persons other than	The number of persons that are
	Romanians and Hungarians	neither Romanians, nor Hungarians
	within the village	divided by the total number of
		permanent residents within the
		village
x_3	The share of Romanians within	The number of Romanians divided
	the municipality	by the total number of permanent
		residents within the municipality
x_4	The share of persons other than	The number of persons that are
	Romanians and Hungarians	neither Romanians, nor Hungarians
	within the municipality	divided by the total number of
		permanent residents within the
		municipality

Tudorel Andrei, Régis Bourbonnais, Bogdan Oancea, Andreea Mirica

<i>x</i> ₅₁	Age of male partner	Computed based on the birth year
		declared at the census
<i>x</i> ₅₂	Age of female partner	Computed based on the birth year
		declared at the census
x_5	Age difference between spouses	Absolute value of the difference
		between the ages of the spouses
x_6	Area of residency	Equals 1 if the couple lives within
		the urban area and 0 if the couple
		lives within the rural area.
<i>x</i> ₇	Difference in educational level	The educational level of the
	between the spouses	spouses in a categorical variable
		taking the following values: 1 for
		primary level, 2 for lower
		secondary level, 3 for professional
		level, 4 for upper secondary and
		post-secondary level and 5 for
		higher education. The difference
		should be understood as difference
		as difference in these levels
x_8	Village_under_50	Equals 1 if the number of
		Hungarians within the village is
		less than 50 in and 0 otherwise
x_9	Village_between_50_and_100	Equals 1 if the number of
		Hungarians within the village is
		between 50 and 100 and 0
		otherwise
<i>x</i> ₁₀	Village_between_100 _and_ 500	Equals 1 if the number of
		Hungarians within the village is
		between 100 and 500 and 0
		otherwise
<i>x</i> ₁₁	municipality_under_1000	Equals 1 if the number of
		Hungarians within the municipality
		is under 1000 and 0 otherwise
<i>x</i> ₁₂	municipality	Equals 1 if the number of
	_between_1000_and_5000	Hungarians within the municipality
		is between 1000 and 5000 and 0
		otherwise
L	Ĭ.	

DOI: 10.24818/18423264/54.1.20.01

C. Results

The initial set of models estimates the likelihood of a mixed marriage where one of the spouses is Hungarian, given the ethnic structure of the village or census area respectively. Thus the dependent variable is the number of mixed marriages with a Hungarian male partner and the number of mixed marriages with a Hungarian female partner respectively in the total number of marriages within the locality/village or municipality. The next set of models improves the initial model by introducing some characteristics of the spouses.

Table 2 presents the results of the first set of models, for men and women respectively.

Next, the LR test is used in order to assess whether or not important variables in assessing the likelihood of mixed marriages of Hungarians are excluded: firstly, the age difference between spouses, then the area of residency and finally the difference in educational level between the spouses are verified one at a time starting to the initial model. The results of the LR test (see table 3) show us that the three characteristics are relevant for the formation of a mixed marriage in the case of Hungarians both males as well as for females. The results reveal that the area of residency has a weak influence on the likelihood of a mixed marriage where the wife is a Hungarian. In this case, the probability of a type one error is 23% (table 4).

Next, considering the results of the LR test, model parameters are estimated for three more model sets, introducing an additional variable. The first one introduces the age difference between spouses (x_5) , the second one, the area of residency (x_6) and the third one the difference in educational level between the spouses (x_7) .

Additionally, the study analysis whether or not the number of Hungarians within a village or census area influences the likelihood of mixed marriages. Therefore, LR test is performed on the four model sets to assess whether or not variables $x_8, x_9, x_{10}, x_{11}, x_{12}$ should be also includen in the models. The results (see table 3) show that the type of village or census area defined by the number of Hungarians is an important variable that influences the share of mixed marriages where a partner is Hungarian in the total number of marriages at component locality/village or municipality.

Table 2. Model parameters estimates

	Model 1	Model 2	Model 3	Model 4	
	The share of mixed marriages where the male partner is				
	Hungarian in the total number of marriages at component				
	locality/village or municipality level				
С	-4.833	-4.768	-4.856	-4.859	
	(0.025)	(0.026)	(0.027)	(0.027)	

Tudorel Andrei, Régis Bourbonnais, Bogdan Oancea, Andreea Mirica

x_1	3.149	3.119	3.316	3.315	
	(0.071)	(0.071)	(0.072)	(0.072)	
x_2	2.463	2.457	2.482	2.481	
	(0.126)	(0.126)	(0.126)	(0.126)	
x_3	1.399	1.422	1.336	1.353	
	(0.077)	(0.077)	(0.077)	(0.077)	
x_4	2.397	2.432	2.202	2.237	
	(0.147)	(0.147)	(0.148)	(0.148)	
x_5		0.019	0.020	0.020	
		(0.002)	(0.002)	(0.016)	
x_6			0.167	0.173	
			(0.016)	(0.016)	
x_7				-0.195	
				(0.010)	
McFadden	0.213	0.214	0.214	0.216	
R-squared					
	The share of mixed marriages where the female partner is				
			er of marriages	at component	
		e or municipality	level		
С	-4.321	-4.233	-4.252	-4.253	
	(0.022)	(0.022)	(0.024)	(0.024)	
x_1	3.678	3.645	3.682	3.682	
_	(0.073)	(0.073)	(0.075)	(0.075)	
x_2	2.693	2.689	2.693	2.694	
	(0.126)	(0.126)	(0.126)	(0.126)	
x_3	0.220	0.240	0.227	0.226	
	(0.077)	(0.077)	(0.077)	(0.077)	
x_4	1.498	1.541	1 402		
ĺ		_	1.492	1.488	
	(0.146)	(0.146)	(0.147)	(0.147)	
x_5		(0.146) 0.026	(0.147) 0.026	(0.147) 0.026	
x_5		(0.146)	(0.147) 0.026 (0.002)	(0.147) 0.026 (0.002)	
x ₅		(0.146) 0.026	(0.147) 0.026 (0.002) 0.036	(0.147) 0.026 (0.002) 0.035	
-		(0.146) 0.026	(0.147) 0.026 (0.002)	(0.147) 0.026 (0.002) 0.035 (0.016)	
-		(0.146) 0.026	(0.147) 0.026 (0.002) 0.036	(0.147) 0.026 (0.002) 0.035 (0.016) 0.023	
x_6 x_7	(0.146)	(0.146) 0.026 (0.002)	(0.147) 0.026 (0.002) 0.036 (0.016)	(0.147) 0.026 (0.002) 0.035 (0.016) 0.023 (0.010)	
<i>x</i> ₆		(0.146) 0.026	(0.147) 0.026 (0.002) 0.036	(0.147) 0.026 (0.002) 0.035 (0.016) 0.023	

DOI: 10.24818/18423264/54.1.20.01

Table 3. The LR test of omitting variables from Model 1

	Female partner
$LR1(x_5)$	241.29 (0.00)
$LR1(x_6)$	1.42 (0.23)
$LR1(x_7)$	4.43 (0.04)
	Male partner
$LR1(x_5)$	134.62 (0.00)
LR1 (x ₆)	90.84 (0.00)
$LR1(x_7)$	379.28 (0.04)

Table 4. The LR test of omitting variables from Model 4

	Female partner	
$LR1(x_8)$	715.07 (0.00)	
$LR1(x_9)$	23.31 (0.00)	
LR1 (x_{10})	14.75 (0.00)	
$LR2(x_{11})$	439.24 (0.00)	
$LR2(x_{12})$	35.91 (0.00)	
	Male partner	
$LR1(x_8)$	1022.59 (0.00)	
$LR1(x_9)$	5.31 (0.00)	
$LR1(x_{10})$	17.10 (0.00)	
$LR2(x_{11})$	473.04 (0.00)	
$LR2(x_{12})$	6.27 (0.00)	

Considering the results obtained after applying the LR test for the variables regarding the type of village or census area, four new model sets are computed, introducing these five variables within the four models from table 2. The parameters estimates of these models are displayed in table 5.

The new results show that for the villages where the number of Hungarians is low, the likelihood of mixed marriages for males as well as for females increases. The results are similar for municipalities, yet, the influence is much lower. Considering the type of residency, the models reveal that mixed marriages are more likely to occur in urban and in rural areas. With regard to education, one can observe that it has a different influence on mixed marriages where the male partner is Hungarian compared to mixed marriages where the female partner is Hungarian. In the case, the educational level of the non-Hungarian partner is higher, while in the second case the educational level of the non-Hungarian partner is lower.

Table 5. Model parameters estimates after introducing the type village and census area

	Model 1	Model 2	Model 3	Model 4	
	The share of mixed marriages where the male partner is Hungarian in the total number of marriages at village or census				
	area level				
c	-4.821	-4.743	-4.539	-4.540	
	(0.026)	(0.026)	(0.029)	(0.029)	
x_1	3.221	3.199	2.961	2.956	
1	(0.072)	(0.072)	(0.074) 2.320	(0.075)	
x_2	2.363	2.358	2.320	2.317	
2	(0.125)	(0.126)	(0.127)	(0.127)	
x_3	1.169	1.177	1.104	1.120	
3	(0.079)	(0.079)	(0.079)	(0.079)	
x_4	1.737	1.745	1.780	1.808	
	(0.150)	(0.150)	(0.151)	(0.151)	
x_5	-	0.023	0.023	0.022	
		(0.002)	(0.002)	(0.002)	
x_6	-	-	-0.357	-0.358	
			(0.022)	(0.022)	
x_7	-	-	-	-0.206	
				(0.010)	
x_8	0.765	0.769	0.887	0900	
	(0.038)	(0.038)	(0.038)	(0.039)	
x_9	0.189	0.200	0.291	0.301	
	(0.048)	(0.048)	(0.049)	(0.049)	
x_{10}	0.083	0.091	0.154	0.161	
	(0.036)	(0.036)	(0.037)	(0.037)	
x_{11}	0.324	0.341	0.577	0.584	
	(0.023)	(0.023)	(0.027)	(0.027)	
x_{12}	0.223	0.232	0.343	0.349	
36.77.11	(0.015)	(0.015)	(0.017)	(0.017)	
McFadden	0.219	0.220	0.221	0.223	
R-squared	TD1 1 2		1 1 2	1	
			es where the fer		
	Hungarian in the total number of marriages at component				
		e or municipality		2.060	
С	-4.296	-4.199	-3.959	-3.960	
	(0.023)	(0.023)	(0.025)	(0.025)	
x_1	3.502	3.479	3.187	3.187	
	(0.075)	(0.075)	(0.077)	(0.077)	

12

DOI: 10.24818/18423264/54.1.20.01

x_2		2.505	2.500	2.460	2.460
_		(0.124)	(0.125)	(0.126)	(0.126)
x_3		0.261	1.265	0.170	0.169
		(0.079)	(0.079)	(0.080)	(0.080)
x_4		1.174	1.186	1.252	1.248
_		(0.149)	(0.149)	(0.151)	(0.151)
x_5		-	0.029	0.028	0.028
			(0.002)	(0.002)	(0.002)
x_6		-	-	-0.472	-0.472
J J				(0.022)	(0.022)
x_7		-	-	-	0.018
-					(0.010)
x_8		0.915	0.923	1.076	1.076
-		(0.038)	(0.038)	(0.038)	(0.039)
x_9		0.095	0.103	0.221	0.221
-		(0.051)	(0.051)	(0.052)	(0.052)
<i>x</i> ₁₀		0.108	0.114	0.200	0.198
-		(0.040)	(0.037)	(0.038)	(0.038)
<i>x</i> ₁₁		0.180	0.200	0.515	0.515
		(0.023)	(0.023)	(0.028)	(0.028)
<i>x</i> ₁₂		0.112	0.124	0.286	0.286
		(0.015)	(0.015)	(0.017)	(0.017)
McFadden	R-	0.187	0.188	0.190	0.191
squared					

D. Conclusions

The aim of this study was to analyse the factors that influence the likelihood of mixed marriages of Hungarians at the level of component localities/villages and municipalities areas. The study revealed that this likelihood increases if the number of Hungarians within the component locality/viillage or municipality is low and the family is settled in an urban area.

The study reveals that the educational level has a different influence on mixed marriages where a partner is a Hungarian male compared to a one where a partner is a Hungarian female. In a mixed marriage where the female belongs to the Hungarian ethnic group, she has the highest educational level within the couple. In a mixed marriage where the male belongs to the Hungarian ethnic group, he has the lowest educational level within the couple. The results are consistent with similar studies within the literature (see for example Qian, 1997).

ACKNOWLEDGEMENTS

Funding: This work was funded by a grant of the Romanian National Authority for Scientific Research and Innovation, CNDS-UEFISCDI, project number PN-III-P4-ID-PCCF-2016-0084.

Conflict of Interest: The authors declare that they have no conflict of interest.

REFERENCES

- [1] Adeogu, O.A, Ajana, A. M. (2008), Application of Logit Model in Adoption Decision: A Study of Hybrid Clarias in Lagos State, Nigeria. American-Eurasian Journal Agriculture and Environment Science, 4(4), 468-472;
- [2] Andrei, T., Bourbonnais, R. (2017), Econometrie teorie si aplicatii. Economica Publishing, Bucharest;
- [3] Bailey, M. (2017), Real Econometrics. Oxford University Press, New York; [4] Blau, P.M., Schwartz, J.E. (1984), Crosscutting Social Circles. Academic Press Orlando, FL;
- [5] Dumanescu L., Marza D., Eppel M. (2014), *Intermarriage throughout History*. *Cambridge Scholar Publishing*, Newcastle upon Tyne;
- [6] Horváth I. (2014), Hungarians of Romania: Demographic Dynamics for the Past one and a Half Century. Historia Actual Online 34,115-125;
- [7] Jones, A. (2007), Applied Econometrics for Health Economists. Radcliffe Publishing, Oxford;
- [8] Kalmijn, M. (2013), The Educational Gradient in Marriage: A Comparison of 25 European Countries. Demography, 50(4), 1499-1520;
- [9] Kulu, H. & Hannemann, T. (2019), Mixed Marriage among Immigrants and their Descendants in the United Kingdom: Analysis of Longitudinal Data with Missing Information. Population Studies, 73(2), 179-196;
- [10] Maarten van Ham and Tammaru, T. (2011), Ethnic Minority-Majority Unions in Estonia Unions; European Journal of Population, (27): 313 335;
- [11] Monden, C., Smits, J. (2005), Ethnic Intermarriage in Times of Social Change: The Case of Latvia. Demography, 42 (2), 323–345;
- [12] Neyrand, G. & M'Sili, M. (1998), Mixed Couples in Contemporary France. Marriage, Acquisition of French Nationality and Divorce. Population: An English Selection, 385-416;
- [13]Okun, B. S. (2004), Insight into Ethnic Flux: Marriage Patterns among Jews of Mixed Ancestry in Israel. Demography, 41(1), 173-187;
- [14]Qian, Z. (1997), Breaking the Racial Barriers: Variations in Interracial Marriage between 1980 and 1990. Demography, 34(2), 263-276;
- [15] Schmitt, R. C. (1969), Age and Race Differences in Divorce in Hawaii. Journal of Marriage and the Family, 48-50;
- [16] Smits, J. (2010), Ethnic Intermarriage and Social Cohesion. What Can We Learn from Yugoslavia?. Social Indicators Research, 96(3),417–432.